If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+20=196
We move all terms to the left:
4n^2+20-(196)=0
We add all the numbers together, and all the variables
4n^2-176=0
a = 4; b = 0; c = -176;
Δ = b2-4ac
Δ = 02-4·4·(-176)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{11}}{2*4}=\frac{0-16\sqrt{11}}{8} =-\frac{16\sqrt{11}}{8} =-2\sqrt{11} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{11}}{2*4}=\frac{0+16\sqrt{11}}{8} =\frac{16\sqrt{11}}{8} =2\sqrt{11} $
| 5=k(45) | | 2x+3=1x+-12 | | 15t-100t=6 | | R(x)=-7 | | x.x+5=22 | | 16+w=-11 | | 2b=124 | | .5x^2+4x+7.5=0 | | Y=-5;-9y | | 2x+3=1x-12 | | 7s-31=39 | | 7x^2+63x+147=0 | | 2(6x+3)=13x-17 | | 50x^2+18=0 | | -5(-2-8)=10x5x | | 2(6x+7)=13x-21 | | -f=12 | | -y-15=-24 | | 2/x+1=7/4x | | 2(7x-3)=-104 | | x+(-81)=78 | | x-2/3=41/5 | | x/2+x/3+x/4+x/6=54-x | | 56.64−x=3.36;x=60 | | 4·3=j | | Y=22y/1+15-3 | | 45x=30(x-40) | | Y=840y | | -2(x-6)-4=4 | | 10-2x=5-x | | 11+1r;r=7 | | 10-5f=4-3f+2 |